
OLE 2 Specification: Data & Presentation Transfer & Caching © Microsoft Corporation 1992-1993. All Rights Reserved.

6. Data & Presentation Transfer & Caching

A central feature of creating compound documents using embedded or linked objects is the ability to ob-

tain a presentation of an object that can be shown in its container when the container is opened. These

presentations are cached locally in the container’s document, since they must be obtainable without the

expense of running the object’s application.

OLE 1 had this capability, of course. At the time an object was created (with OleCreate(), etc.), the client

specified what sort of presentation it needed from the object:

“OLESTATUS OleCreate(lpszProtocol, lpClient, lpszClass, lhClientDoc, lpszObjname, lplpObject, renderopt, cfFormat)

...

renderopt Specifies the client's preference for presentation data for the object. This parameter can be one of the following values:

Value Meaning

olerender_none The client library does not obtain any presentation data and does not draw the object.

olerender_draw The client calls the OleDraw function, and the library obtains and manages presentation

data.

olerender_format The client calls the OleGetData function to retrieve data in a specific format. The library

obtains and manages the data in the requested format, as specified by the cfFormat

parameter.

cfFormat Specifies the clipboard format when the renderopt parameter is olerender_format. This clipboard format is used

in a subsequent call to the OleGetData function. If this clipboard format is CF_METAFILEPICT, CF_DIB, or

CF_BITMAP, the library manages the data and draws the object. The library does not support drawing for any

other formats.”

This scheme accommodated the ability for the object client to use the object either by drawing it as a pic-

ture or by getting data from it in a certain clipboard format. However, it suffers from a major drawback:

• Only one presentation or data cache can be maintained in an object. In particular, a contain-

er cannot request that both a cache of the screen presentation and of a printer presentation of

the object be maintained. Further, the container must choose between getting a drawing

presentation or getting a data presentation; it cannot have both.

This problem is addressed in OLE 2; the present chapter discusses the solution in detail. OLE 2 provides

the capability to maintain inside an object drawing presentations for one or more specific target devices in

addition to the screen. Further, OLE-maintained drawing presentations are automatically converted as

appropriate as an object in a document is transported from one platform to another. For example, an object

transported from Windows to the Macintosh will have metafile presentations converted to PICTs.

We begin this chapter by discussing some of the supporting types and constants used in what follows.

Next, we present the interfaces IDataObject and IViewObject, the two central interfaces involved in data

and presentation transfer respectively. Following this, we examine exactly how all these interfaces are

pieced together and used by containers, handlers, and servers.

6.1. Supporting Types and Constants

A few types and constants play a central rôle in the supporting data and presentation transfer and caching.

6.1.1. FORMATETC

A FORMATETC is a generalization of a simple clipboard format, enhanced to encompass a target device,

an “aspect,” and a “storage medium;” wherever one might expect to find a clipboard format, a FORMAT-

ETC is used instead. Its primary use is in parameters passed to functions in IDataObject interface, such as

IDataObject::GetData() where it is used to indicate exactly what kind of data the caller is requesting.

IDataObject is discussed below.

Page: 147

OLE 2 Specification: Data & Presentation Transfer & Caching © Microsoft Corporation 1992-1993. All Rights Reserved.

typedef struct tagFORMATETC {
CLIPFORMAT cfFormat; // the format in which data is conveyed.
DVTARGETDEVICE * ptd; // the target device for which it has been composed.
DWORD dwAspect; // disambiguates multiple uses of same format.
LONG lindex; // interpreted according to dwAspect.
DWORD tymed; // the kind of storage medium on which it the data is conveyed.
} FORMATETC;

6.1.1.1. FORMATETC::cfFormat

The cfFormat member of FORMATETC indicates the particular clipboard format of interest. This is an

occurrence of a concept already familiar to Windows programmers; see the Windows SDK documentation

for a further discussion of clipboard formats and related functions, such as RegisterClipboardFormat().

6.1.1.2. FORMATETC::ptd

The ptd member indicates for which target device the data is to be composed. This member is a pointer to

a DVTARGETDEVICE, which is described below. The ptd member may sometimes be NULL; NULL can be

used whenever the data format is insensitive to target device or when the caller simply doesn’t care what

device is used. In the latter case, if the data still requires a target device, then the object should pick an

appropriate default device (often the display for visual objects). Data obtained from an object with a NULL

target device (especially in the former case where the data format is insensitive to the device) can be

thought of as an alternate form of the native representation of the object: a representation that can be used

for data interchange. The data that results is usually the same as would result if the user did a File / Save
As... and specified an interchange format.

6.1.1.3. FORMATETC::dwAspect

The dwAspect member enables the caller to request data that represents different aspects, roles, or views of

the object, yet are all communicated using the same clipboard format. For example, the caller might want

to request an iconic picture of the object vs. its content picture, yet retrieve both in a metafile clipboard

format. Values from this parameter are taken from the enumeration DVASPECT:

typedef enum tagDVASPECT {
DVASPECT_CONTENT = 1,
DVASPECT_THUMBNAIL = 2,
DVASPECT_ICON = 4,
DVASPECT_DOCPRINT = 8,
} DVASPECT;

(Even though these values are individual flag bits, a value in FORMATETC::dwAspect must specify

exactly one value. Use of multiple DVASPECT values is found in the few variables named “grfAspects,”

such as the parameter to IViewObject::SetAdvise(), which is discussed below. The single exception to this

is found in IDataObject::DAdvise().)
The semantics of each of these values is as follows.

Value Description

DVASPECT_CONTENT Give a representation of the object as appropriate for display as an em-

bedded object inside its container. For use with compound document

objects, this is by far the most common value. Note that it would be

appropriate to use this value to get a presentation of the embedded object

either for rendering on the screen or on a printer; DVASPECT_DOCPRINT,

by contrast, concerns the look of the object as if it were printed from the

top level.

DVASPECT_THUMBNAIL Give a thumbnail representation of the object, a picture appropriate for

showing in a browsing tool. The File / Find File ... and Insert / Picture ...
dialogs in Microsoft Word for Windows 2.0 are examples of such browsers.

Page: 148

OLE 2 Specification: Data & Presentation Transfer & Caching © Microsoft Corporation 1992-1993. All Rights Reserved.

DVASPECT_ICON Give an iconic representation of the object. See also “Labeled-icon

Metafile” below.

DVASPECT_DOCPRINT Give a representation of the object as if it were printed, i.e.: as if File /
Print... were chosen from its menus. The described data represents a

sequence of pages.

6.1.1.4. FORMATETC::lindex

The interpretation of this field is governed by the current value of FORMATETC::dwAspect. The

relationship is as follows:

Value Description

DVASPECT_CONTENT lindex must be -1.

DVASPECT_THUMBNAIL lindex is ignored.

DVASPECT_ICON lindex is ignored.

DVASPECT_DOCPRINT The lindex parameter controls which pages of the document are referred to.

A value of -1 indicates all the pages are of interest. A positive value indi-

cates a particular page number in the document. Page 1 is the first page.

6.1.1.5. FORMATETC::tymed

The tymed member of FORMATETC indicates by what mechanism data is to be conveyed in a particular

data transfer. In addition to being passed through global memory, the data can be passed though a disk file

or through an instance of one of the OLE 2 storage-related interfaces (see the chapter on “Persistent Stor-

age for Objects” for a detailed discussion of these interfaces). When data is actually transferred, a general-

ization of an HGLOBAL known as a STGMEDIUM is used to pass the data.

This member is an or’ing together of values taken from the enumeration TYMED, which have the following

meanings:

typedef enum tagTYMED { // Data provided on a storage medium consisting of ...
TYMED_HGLOBAL = 1, // ... a global memory handle
TYMED_FILE = 2, // ... a file name indicating a disk file
TYMED_ISTREAM = 4, // ... a pointer to an instance of IStream interface
TYMED_ISTORAGE = 8, // ... a pointer to an instance of IStorage interface
TYMED_GDI = 16, // ... a GDI object; needs special release behaviour
TYMED_MFPICT = 32, // ... a CF_METAFILEPICT: contains a nested global handle
TYMED_NULL = 0, // (not actually a medium; indicates none is passed).
} TYMED;

Value Description

TYMED_HGLOBAL the data is to be passed in a global memory handle, much as data is passed

today using DDE.

TYMED_FILE the data is to be passed in the contents of a file on the disk.

TYMED_ISTREAM the data is to be passed using an instance of IStream interface. The data passed

is the data available through IStream::Read() calls.

TYMED_ISTORAGE the data is to be passed using an instance of IStorage interface. The data passed

is the streams and storage objects nested beneath the IStorage.

TYMED_GDI the data is passed in a global memory handle, but is in fact a GDI object, which

requires special release behavior: DeleteObject() instead of GlobalFree().
TYMED_MFPICT the data passed is in CF_METAFILEPICT format. It too requires special release

behaviour.

The general philosophy of the use of the tymed member is as follows:

Any particular clipboard format has a natural expression as either a flat format or a structured hier-

archical one. All traditional formats are the former case; examples of the latter are the OLE 2 embedded

object formats (e.g.: the CF_EMBEDDEDOBJECT and CF_EMBEDSOURCE formats, as described in the “Drag

Page: 149

OLE 2 Specification: Data & Presentation Transfer & Caching © Microsoft Corporation 1992-1993. All Rights Reserved.

& Drop and the Clipboard” chapter). We have three types of flat media (hglobal, stream, and file) and one

type of structured media (storage).

It is always appropriate to ask for a particular format on a flat or a structured medium, as appropriate for

the natural expression of the format. In addition, is plausible to ask for a format whose natural expression

is a structured format to be provided on a flat format: the structured-to-flat mapping is that provided by

the Compound File54 IStorage implementation on top of an ILockBytes. For example, passing a structured

format in a file uses StgCreateDocfile() to build an IStorage on top of it, then fills in the IStorage as deter-

mined by the semantics of the format.

It is not appropriate to ask for a “flat” format on a structured medium. CF_TEXT, for example, cannot be

passed on TYMED_ISTORAGE.

6.1.2. STGMEDIUM

In much the same way as a FORMATETC is a generalization of a clipboard format, a STGMEDIUM is a

generalization of a global memory handle: wherever one might expect to find an HGLOBAL involved in a

data transfer, in OLE 2 a STGMEDIUM is used in its place.

typedef struct tagSTGMEDIUM {
DWORD tymed; // ONE value from the enumeration TYMED. Indicates currently valid union member.
union {

HANDLE hGlobal;
LPSTR lpszFileName;
IStream* pstm;
IStorage* pstg;
};

IUnknown * punkForRelease; // If non-NULL, ReleaseStgMedium() uses this to release the STGMEDIUM.
} STGMEDIUM;

HRESULT ReleaseStgMedium(pmedium);
A STGMEDIUM is a tagged union whose members correspond to the enumeration TYMED: each different

type of medium has a matching member of STGMEDIUM through which occurrences of that medium are

passed.

A very common thing to do with a STGMEDIUM is to pass it from one body of code to another. For

example, in IDataObject::GetData(), the callee can allocate a medium and return it to the caller (see

below). In such situations we wish to have flexibility as to whether the receiving body of code now owns

the medium (and thus can free the resources it contains at will) or whether when the receiving body of

code is done with the medium it needs to inform the code that provided the medium in the first place in

order that it can, for example, free up other hidden resources that are being maintained on the medium’s

behalf.

The provider of the medium indicates its choice of these two ownership scenarios in the value it provides

in punkForRelease. A NULL value indicates the former scenario, where the receiving body of code can

free the medium itself. If a non-NULL pointer is specified, then IUnknown::Release() will be invoked on

it in order to free the medium.

The receiving body of code never itself examines punkForRelease; instead, it simply calls ReleaseStgMedium()
to free the medium. See that function for a description of how punkForRelease is used.

6.1.2.1. ReleaseStgMedium

HRESULT ReleaseStgMedium(pmedium)

Free the given storage medium. After this call, the medium is invalid and can no longer be used.

If the original provider of the medium wished to maintain control of the freeing of the medium, the

following is done according to the type of storage medium, after which pmedium->punkForRelease->Release()
is invoked.

54 Historically, Compound Files were called “Docfiles.” The two terms are synonymous.

Page: 150

OLE 2 Specification: Data & Presentation Transfer & Caching © Microsoft Corporation 1992-1993. All Rights Reserved.

Medium Done before calling pmedium->punkForRelease->Release()

TYMED_HGLOBAL, TYMED_MFPICT, TYMED_GDI

Nothing is done.

TYMED_FILE Nothing is done to the actual disk file. Frees the file name string by using the

standard memory management paradigm.

TYMED_ISTREAM Calls IStream->Release().

TYMED_ISTORAGE Calls IStorage->Release().

If by contrast ownership was transferred to the receiver of the data (which is indicated to ReleaseStgMed-
ium() by punkForRelease being NULL), then the following is done.

Medium Done in order to free the data

TYMED_HGLOBAL Calls GlobalFree() on the handle.

TYMED_GDI Calls DeleteObject() on the handle.

TYMED_MFPICT The hMF that it contains is deleted with DeleteMetaFile(), then the handle

itself passed to GlobalFree().

TYMED_FILE Frees the disk file by deleting it. Frees the file name string by using the

standard memory management paradigm.

TYMED_ISTREAM Calls IStream->Release().

TYMED_ISTORAGE Calls IStorage->Release().

The arguments to this function are as follows:

Argument Type Description

pmedium STGMEDIUM * the storage medium which is to be freed

return value HRESULT S_OK

6.1.3. DVTARGETDEVICE

DVTARGETDEVICE contains enough information about a Windows target device such that an HDC can be

created on the device using CreateDC(). This structure is very much like the OLE 1 OLETARGETDEVICE
structure, but it contains an initial size count so that it can be copied more easily. In addition, it removes

some obsolete functionality having to do with “environments.”

typedef struct tagDVTARGETDEVICE {
DWORD tdSize;
WORD tdDriverNameOffset;
WORD tdDeviceNameOffset;
WORD tdPortNameOffset;
WORD tdExtDevmodeOffset;
BYTE tdData[1];
} DVTARGETDEVICE;

Member Description

tdSize the size of the DVTARGETDEVICE structure in bytes.

tdDeviceNameOffset specifies the offset from the beginning of the target device structure to the name

of the device.

tdDriverNameOffset specifies the offset from the beginning of the target device structure to the name

of the device driver.

tdPortNameOffset specifies the offset from the beginning of the target device structure to the name

of the port.

tdExtDevmodeOffset specifies the offset from the beginning of the target device structure to a

DEVMODE structure retrieved by the ExtDeviceMode() function.

tdData specifies an array of bytes containing data for the target device.

Page: 151

OLE 2 Specification: Data & Presentation Transfer & Caching © Microsoft Corporation 1992-1993. All Rights Reserved.

The strings indirectly indicated by tdDeviceNameOffset, tdDriverNameOffset, and tdPortNameOffset

should be NULL-terminated.

6.1.4. Labeled-icon Metafile

In OLE2, when an embedded object is shown as an icon in its container, the icon has a user-defined label

below it. Thus, when an object is asked for an icon, it cannot return an actual windows HICON; rather, it

returns a metafile that when played would draw an icon with a label below. To support this, and to support

the container’s ability to edit the label of the icon, we define a particular style of metafile. This is a normal

metafile, but with some restrictions and interpretations on its records.

1. The initial records in the metafile can in fact be anything except the comment denoted in 2.

Most typically, however, the initial records should be:

a. SetWindowOrg(0,0) and SetWindowExt(max of text and icon width, icon+text height+4). This gets us

the scaling that we need.

b. draw the icon centered horizontally at the top of the metafile

2. Next is a metafile comment containing the string “IconOnly”. This delimits the icon-draw-

ing part of the metafile from the rest of it. Any ExtTextOut() calls following this record are in

fact part of the label. The first and second comment following this one are also semantically

significant. This “IconOnly” comment may be omitted if there is no label, and if no icon-

source information is provided.

3. Typically now follow calls to set the text color and the background mode, and to select a

font. Anything but ExtTextOut or comment records are allowed.

4. Now follow one or more consecutive ExtTextOut calls, the text of which concatenated

together in order comprises the label.

5. The metafile comment next following the one in step 2 contains a string which is the full file

name of the .EXE or .DLL from which this icon was extracted. No metafile comments may

intervene between this one and the one in step 2.

6. The next following metafile comment contains a string which is the index of the icon used

from within the file indicated in step 5. No metafile comments may intervene between this

one and the one in step 5.

When, in IDataObject::GetData() or IDataObject::GetDataHere(), an object is asked for DVASPECT_ICON
and metafile format, it should respond with a metafile as just described.

6.2. IDataObject interface

IDataObject interface provides the ability to pass data to and from an object using SetData() and Get-

Data(). The data that is passed is arranged according to a particular format denoted by a clipboard format.

Optionally, the data is tagged as being composed or laid-out according to the characteristics of a particular

target device. The data being transferred can be conveyed by one of several different media.

The set of formats, etc., that can legally be passed to and from an object can be enumerated with

EnumFormatEtc(). In addition, an advisory connection can be made to the data object whereby it will

notify a caller when data it contains changes.

interface IDataObject : IUnknown {
virtual HRESULT GetData(pformatetc, pmedium) = 0;
virtual HRESULT GetDataHere(pformatetc, pmedium) = 0;
virtual HRESULT QueryGetData(pformatetc) = 0;
virtual HRESULT GetCanonicalFormatEtc(pformatetcIn, pformatEtcOut) = 0;
virtual HRESULT SetData(pformatetc, pmedium, fRelease) = 0;
virtual HRESULT EnumFormatEtc(wDirection, ppenumFormatEtc) = 0;

Page: 152

OLE 2 Specification: Data & Presentation Transfer & Caching © Microsoft Corporation 1992-1993. All Rights Reserved.

virtual HRESULT DAdvise(pformatetc, grfAdvf, pAdvSink, pdwConnection) = 0;
virtual HRESULT DUnadvise(dwConnection) = 0;
virtual HRESULT EnumDAdvise(ppenumAdvise) = 0;
};

6.2.0.1. IDataObject::GetData

HRESULT IDataObject::GetData(pformatetc, pmedium)

Retrieve data for a certain aspect of the object in a certain clipboard format formatted for a certain target

device conveyed on a certain storage medium. The information as to what is to be retrieved and how it is

to be passed is indicated in the parameter pformatetc.

pformatetc->tymed may indicate that the caller is willing to receive the data on one of several media. The

callee decides if it can support one of the media requested by the caller. If it cannot, then it returns

DATA_E_FORMATETC. If it can, then it returns the actual data on a medium passed back through the

pmedium parameter. pmedium is an conceptually an out parameter: the STGMEDIUM structure is allocated

by the caller, but filled by the callee.

The callee gets to decide who is responsible for releasing the resources maintained on behalf of the

medium: itself, or the caller. The callee indicates its decision through the value it returns through function

pointer pmedium->punkForRelease(), as was described above. The caller always frees the returned medium by

simply calling ReleaseStgMedium() (then, of course, freeing the STGMEDIUM structure itself).

It is not presently possible to transfer ownership of a root-level IStorage from process to another, though

this will be rectified in later releases. Therefore, at present, use of GetData() with TYMED_ISTORAGE re-

quires that the callee retain ownership of the data, that is, that it use a non-NULL pUnkForRelease. Alterna-

tively, callers are encouraged to instead use GetDataHere(), as in general it is more efficient.

Argument Type Description

pformatetc FORMATETC * the format, etc., in which the caller would like to obtain the returned

data.

pmedium STGMEDIUM * a place in which the medium containing the returned data is commu-

nicated.

return value HRESULT S_OK, DATA_E_FORMATETC.

6.2.0.2. IDataObject::GetDataHere

HRESULT IDataObject::GetDataHere(pformatetc, pmedium)

This function is almost identical to IDataObject::GetData(), but the caller provides the medium instead of

the callee; the callee just copies data into the medium that the caller provides. Since the caller allocates

the storage medium, then (of course) it is also responsible for freeing it.

The callee must fill in the actual medium provided by the caller: in the hGlobal case, for example, the

callee cannot allocate a new hGlobal, but must put its data in the one the caller provided. If the caller-

provided medium is not large enough for the data, then STG_E_MEDIUMFULL should be returned.55

It will always be the case that on entry the caller sets pmedium->tymed == pformatetc->tymed; pformatetc->tymed
can only indicate one medium.

Argument Type Description

pformatetc FORMATETC * the format, etc., in which the caller would like to obtain the returned

data.

pmedium STGMEDIUM * a place in which the medium containing the returned data is commu-

nicated.

return value HRESULT S_OK, DATA_E_FORMATETC, STG_E_MEDIUMFULL

55 Notice that, unlike the other media, in the HGLOBAL case, there is no direct way for the callee to indicate the number of valid bytes

returned. However, since the Windows memory allocator has historically always rounded the size of allocated global memory blocks,

data that can validly passed in an HGLOBAL must internally be self-sizing. Thus, there is no problem.

Page: 153

OLE 2 Specification: Data & Presentation Transfer & Caching © Microsoft Corporation 1992-1993. All Rights Reserved.

6.2.0.3. IDataObject::QueryGetData

HRESULT IDataObject::QueryGetData(pformatetc)

Answer as to whether if this FORMATETC were to be passed to IDataObject::GetData() then data would be

successfully retrieved. (There is no way to directly query whether IDataObject::GetDataHere() would be

successful.) pformatEtc here is as in IDataObject::GetData().

Argument Type Description

pformatetc FORMATETC * as in IDataObject::GetData().

return value HRESULT S_OK, S_FALSE

6.2.0.4. IDataObject::GetCanonicalFormatEtc

HRESULT IDataObject::GetCanonicalFormatEtc(pformatetcIn, pformatetcOut)

It will sometimes be the case that a given data object will return exactly the same data for more than one

requested FORMATETC. This will be particularly common for target devices: it will often be the case that

the data returned is insensitive to the particular target device in question. In order that callers may store

data they obtain from objects more efficiently, this function provides a mechanism whereby the object can

communicate to the caller which FORMATETCs produce the same output data. Conceptually, the sets of

FORMATETCs for which the same data is returned partition the space of FORMATETCs into equivalence

classes; GetCanonicalFormatEtc() returns a distinguished member of the equivalence class of which

pformatetcIn is a member.

In this function, the tymed member of each FORMATETC is not significant and is to be ignored.

The callee should pick a canonical representative of the set of FORMATETCs equivalent to the one passed

by the caller in *pformatetcIn and return that though pformatetcOut. pformatetcOut is allocated by the caller; the

callee merely fills it in.

If the returned FORMATETC is different than the passed one then S_OK is returned. If the returned FORMAT-
ETC is the same as the passed one then DATA_S_SAMEFORMATETC is returned, and no value need be filled

in in pformatetcOut, with the exception of pformatetcOut->ptd, which must be NULLed. Thus, the simplest

implementation of this function is one that merely sets *(pformatetcOut->ptd) = NULL and returns the constant

DATA_S_SAMEFORMATETC.

Argument Type Description

pformatetcIn FORMATETC * the format, etc., in which the caller would like to obtain the returned

data.

pformatetcOut FORMATETC * The place at which the canonical equivalent to pformatetcIn is to be

returned. Caller allocates, callee fills in. If DATA_S_SAMEFORMATETC
is returned from the function, then pformatetcOut->ptd must be set to

NULL by the callee before exiting.

return value HRESULT S_OK, DATA_S_SAMEFORMATETC

6.2.0.5. IDataObject::SetData

HRESULT IDataObject::SetData(pformatetc, pmedium, fRelease)

Send data in a specified format, etc., to this object. As in IDataObject::GetData(), pformatetc indicates the

format, aspect, etc., on which the data is being passed. The actual data is passed through the caller-allo-

cated pmedium parameter.56

The caller decides who, itself or the callee, is responsible for releasing the resources allocated on behalf of

the medium. It indicates its decision in the fRelease parameter. If false, then the caller retains ownership,

and the callee may only use the storage medium for the duration of the call. If true, then the callee takes

ownership, and must itself free the medium when it is done with it. The callee should not consider itself as

56 It will always be the case here that pformatetc->tymed == medium->tymed.

Page: 154

OLE 2 Specification: Data & Presentation Transfer & Caching © Microsoft Corporation 1992-1993. All Rights Reserved.

having taken ownership of the data unless it successfully consumes it (i.e.: does not return DATA_E_FOR-
MATETC or some other error). If it does take ownership, the callee frees the medium by calling ReleaseStg-
Medium(); see that function for a discussion of how the medium is actually freed.

Argument Type Description

pformatetc FORMATETC * the format, etc., in which to interpret the data contained in the me-

dium.

pmedium STGMEDIUM * the actual storage medium (an in-parameter only).

fRelease BOOL indicates who has ownership of the medium after the call completes.

return value HRESULT S_OK, DATA_E_FORMATETC.

6.2.0.6. IDataObject::EnumFormatEtc

HRESULT IDataObject::EnumFormatEtc(wDirection, ppenumFormatEtc)

Enumerate the forms in which data can be stored into or retrieved from this object with SetData() and

GetData() respectively. This is not a guarantee of support: the formats, etc., which are acceptable can in

general change over time, and so the information returned by the enumeration must be treated as a hint by

the caller as to what can in reality be passed. In practice, it will be a very good hint, but a hint neverthe-

less.

wDirection indicates the operation whose legal data transfer forms the caller wishes to enumerate. It is a

value taken from the enumeration DATADIR, which is defined as follows:

typedef enum tagDATADIR {
DATADIR_GET = 1,
DATADIR_SET = 2,
} DATADIR;

These values have the following semantics:

Value Description

DATADIR_GET enumerate those forms which can be passed in GetData().

DATADIR_SET enumerate those forms which can be passed in SetData().

ppenum indicates where the resulting enumerator should be returned. The returned enumerator is of type

IEnumFORMATETC, which is defined as:

typedef Enum<FORMATETC> IEnumFORMATETC; // See Chapter 4 on enumerations.
(See the section in Chapter 4 regarding enumerations for a description of how this template notation in

fact specifies the complete IEnumFORMATETC interface.)

The FORMATETCs returned by the enumeration usually (perhaps always) indicate a NULL target device,

FORMATETC::ptd. This is appropriate since, unlike the other members of FORMATETC, the target device

does not participate in the object’s decision as to whether it can accept (provide) the data in a SetData()

call (respectively, GetData() call). Also, the FORMATETC::tymed member may often indicate that more than

one kind of storage medium is acceptable.

Argument Type Description

wDirection WORD a value from the enumeration DATADIR; see above.

ppenumFormatEtc IEnumFORMATETC** the place at which the instantiated enumerator is to be re-

turned.

return value HRESULT S_OK.

6.2.0.7. IDataObject::DAdvise

HRESULT IDataObject::DAdvise(pformatetc, grfAdvf, pAdvSink, pdwConnection)

Set up an advisory connection between the data object and an advisory sink through which the sink can be

informed when data provided by the object later changes. Not all uses of IDataObject support this

DAdvise() functionality; this function can return OLE_E_ADVISENOTSUPPORTED. However, specifically,

Page: 155

OLE 2 Specification: Data & Presentation Transfer & Caching © Microsoft Corporation 1992-1993. All Rights Reserved.

all embeddings must support advise capability: if IOleObject is supported on an object, then advises on the

IDataObject obtained via QueryInterface() from that IOleObject must be supported.

As in GetData(), pformatetc indicates the format, etc., in which the caller wishes to receive the data.

When the data change occurs in the object, the object pAdvSink should be informed of the change using

IAdviseSink::OnDataChange(). The implementation of IDataAdviseHolder provided by CreateDataAdviseHolder() is

extremely helpful in supporting this functionality; see below.

If an advisory connection is successfully set up, the callee returns a non-zero value through pdwConnection
(if a connection fails to be established, zero is returned). The connection so established can be torn down

by the caller by passing this non-zero token back to this object in IDataObject::DUnadvise().
A group of flags are passed in the grfAdvf parameter to control the advisory connection. The constants that

can be or’d together and passed in this parameter are found in the enumeration ADVF:

typedef enum tagADVF {
ADVF_NODATA = 1, // supress transfer of data in notification.
ADVF_ONLYONCE = 2, // only notify once, then do an automatic unadvise.
ADVF_PRIMEFIRST = 4, // send additional initial notification.
ADVF_DATAONSTOP = 64, // send data before shutdown
ADVFCACHE_NOHANDLER = 8, // see IOleCache::Cache().
ADVFCACHE_FORCEBUILTIN = 16, // see IOleCache::Cache().
ADVFCACHE_ONSAVE = 32, // see IOleCache::Cache().
} ADVF;

(The values ADVFCACHE_NOHANDLER, ADVFCACHE_FORCEBUILTIN, and ADVFCACHE_ONSAVE are not

applicable here, only in the grfAdvf parameter to the IOleCache::Cache() function. See that function for a

description of the semantics of these flags).

A request for an advise with a FORMATETC with the following values:

formatetc.cfFormat == NULL
formatetc.ptd == NULL
formatetc.dwAspect == -1L;
formatetc.lindex == -1L;
formatetc.tymed == -1L;

and a grfAdvf which includes ADVF_NODATA is in fact to be interpreted as generic request to be informed

of any change in the IDataObject. (Such “wildcard” advises are the only situation in which a dwAspect

with more than one aspect is allowed in a FORMATETC::dwAspect.) See also IDataAdviseHolder::SendOnData-
Change().
Value Description

ADVF_NODATA Do not actually return the data bits on the OnDataChange(), merely indicate that

the data in the specified format has changed. The caller can then at its leisure

retrieve the latest value with a GetData() call. OnDataChange() is still called;

however, the medium used is TYMED_NULL.

At its choice, the data object may choose to provide the data anyway, which it may

wish to do particularly in the case where more than one advisory connection has

been made specifying the same FORMATETC.

ADVF_ONLYONCE Automatically tear down the advisory connection after sending the first OnData-

Change() to the sink. If this flag is specified, the sink will not receive two OnData-

Change() calls. A non-zero *pdwConnection is still returned if the connection is

established, even if this flag is given. This allows the caller to tear down the

connection before the first OnDataChange() occurs.

ADVF_PRIMEFIRST Send an additional initial OnDataChange() to the sink as soon as the data is

available, without waiting for it to change from its present value.

Notice that the combination DAdvise(..., ADVF_ONLYONCE | ADVF_PRIMEFIRST, ...)
provides, in effect, an asynchronous GetData() call.

ADVF_DATAONSTOP If used with ADVF_NODATA, then this flag indicates that in the event that the source

is about to shut down and it has changed at all since the advisory connection was

established, then before shutting down it should make an additional OnData-

Page: 156

OLE 2 Specification: Data & Presentation Transfer & Caching © Microsoft Corporation 1992-1993. All Rights Reserved.

Change() call that actually provides the data.57 Sinks that specify this flag should in

OnDataChange() look to see if data is in fact being passed and take it if so; they

may not get another chance.

Almost all uses of ADVF_DATAONSTOP, will, in fact, also specify ADVF_NODATA.

However, if ADVF_DATAONSTOP is used without also specifying ADVF_NODATA,

then, at the data source’s option, the behaviour can be one of the following:

• the data source may behave as if ADVF_DATAONSTOP had not been indicated

at all.

• the data source may behave as if ADVF_NODATA had also been given in

addition to ADVF_DATAONSTOP.
• the data source may choose to only send a notification (if something’s

changed) in the shutdown case (of course one carrying the data); that is, the

data source can choose to omit sending notifications as data changes during

editing (ADVF_PRIMEFIRST, though, would still force an initial notification.)

This approach allows the sink to indicate that it is willing to do a little more work

in dealing with the notifications that it receives in order to allow the data source the

opportunity to optimize communications costs.

The parameters to this function have the following meanings.

Argument Type Description

pformatetc FORMATETC* the format, etc., in which the occurrence of changes should be

reported to the specified sink.

grfAdvf DWORD a group of flags from the enumeration ADVF.

pAdvSink IAdviseSink* the sink which should be informed of changes.

pdwConnection DWORD* if an advisory connection is successfully established by this call,

then through here is returned a token that can be passed to

DUnadvise() in order to tear the connection down.

return value HRESULT S_OK, DATA_E_FORMATETC, OLE_E_ADVISENOTSUPPORTED

6.2.0.8. IDataObject::DUnadvise

HRESULT IDataObject::DUnadvise(dwConnection)

Tear down an advisory connection setup previously with IDataObject::DAdvise(). The dwConnection pa-

rameter here is a non-zero value returned through pdwConnection in the DAdvise().

Argument Type Description

dwConnection DWORD a non-zero value previously returned from IDataObject::DAdvise().

return value HRESULT S_OK, E_FAIL.

6.2.0.9. IDataObject::EnumDAdvise

HRESULT IDataObject::EnumDAdvise(ppenumAdvise)

Enumerate the advisory connections currently found on this object. While an enumeration is in progress,

the effect of registering or revoking advisory connections on what is later is enumerated is undefined. In

the event that there are presently no connections on the object, NULL is returned through ppenumAdvise.

The returned enumerator is of type IEnumSTATDATA, which is defined as:

typedef Enum<STATDATA> IEnumSTATDATA; // See Chapter 4 on enumerations.

57 If we didn’t have a flag of this sort, by the time that the normal non-data-carrying OnDataChange() reaches the sink, the source may

have completed shutting down, and so the data may not be retrievable. In short, without this flag, ADVF_NODATA would be of little

use.

Page: 157

OLE 2 Specification: Data & Presentation Transfer & Caching © Microsoft Corporation 1992-1993. All Rights Reserved.

(See the section in Chapter 4 regarding enumerations for a description of how this template notation in

fact specifies the complete IEnumSTATDATA interface.)

STATDATA is a structure defined as follows:

typedef struct tagSTATDATA {
FORMATETC formatetc;
DWORD grfAdvf;
IAdviseSink* pAdvSink;
DWORD dwConnection;
} STATDATA;

The arguments to this function are as follows:

Argument Type Description

ppenumAdvise IEnumSTATDATA* the place at which the new enumerator should be returned. NULL

is a legal return value; it indicates that there are presently not any

connections.

return value HRESULT S_OK, OLE_E_ADVISENOTSUPPORTED.

6.3. IViewObject interface

IViewObject interface provides the ability to ask an object to provide a pictorial representation of itself by

drawing on a caller-provided device context. Independently of the drawing device context, the caller can

specify the target device for which it would like the object to compose the picture. The picture can thus be

composed as if it were drawn on one target device but in fact actually be drawn on a device context be-

longing to another device. Different kinds of pictures can be produced from the object: a caller can ask for

its content representation (for embedding), an iconic representation, etc. In addition, the caller can ask to

be informed when in the future the picture produced by the object changes. IViewObject interface is very

much like IDataObject interface, but operates in the context of drawing pictures instead of getting data.

Due to Windows architectural considerations, it is not possible to remote an instance of IViewObject be-

tween processes.

interface IViewObject : IUnknown {
virtual HRESULT Draw(dwAspect, lindex, pvAspect, ptd, hicTargetDev, hdcDraw, lprcBounds, lprcWBounds,

pfnContinue, dwContinue) = 0;
virtual HRESULT GetColorSet(dwAspect, lindex, pvAspect, ptd, hicTargetDev, ppColorSet) = 0;
virtual HRESULT Freeze(dwAspect, lindex, pvAspect, pdwFreeze) = 0;
virtual HRESULT Unfreeze(dwFreeze) = 0;
virtual HRESULT SetAdvise(grfAspects, grfAdvf, pAdvSink) = 0;
virtual HRESULT GetAdvise(pgrfAspects, pgrfAdvf, ppAdvSink) = 0;
};

HRESULT OleDraw(pUnk, dwAspect, hdcDraw, lprcBounds);

6.3.0.1. IViewObject::Draw

HRESULT IViewObject::Draw(dwAspect, lindex, pvAspect, ptd, hicTargetDev,

hdcDraw, lprcBounds, lprcWBounds, pfnContinue, dwContinue)

Draw the indicted piece of the indicated aspect of this object on the device context hdcDraw with format-

ting, font selection, and other compositional decisions made as if the object were going to be drawn on the

target device indicated by ptd.

hicTargetDev is an information context on the ptd target device. It may in fact be a full device context in-

stead of a mere information context, but the callee cannot rely on that. hicTargetDev is passed by the

caller for the convenience of the callee, since callees almost always need an information context for the

target device anyway, and callers usually have a device context available. hicTargetDev may not be

NULL.

dwAspect indicates what kind of picture of the object is being requested. Legal values for this parameter

are taken from the enumeration DVASPECT, which was previously described. Only one value may be

Page: 158

OLE 2 Specification: Data & Presentation Transfer & Caching © Microsoft Corporation 1992-1993. All Rights Reserved.

specified from this enumeration. The relationship between the dwAspect parameter and the lindex and

lprcBounds parameters is as follows:

Value Description

DVASPECT_CONTENT

This is by far the most common value. lindex must be -1. The compositional size of the

object is as determined by the layout negotiation that has taken place: IOleObject::SetExtent(),
etc.

DVASPECT_ICON, DVASPECT_THUMBNAIL

lindex is ignored. If the object supports IOleObject interface,58 then the client can suggest the

compositional size of the drawing with IOleObject::SetExtent().59 Otherwise, the compositional

size of the drawing is implicitly determined by the object itself; the client has no control over

it. lprcBounds specifies the rectangle on hdcDraw into which the icon should be mapped.

DVASPECT_DOCPRINT

The lindex parameter controls which pages of the document are drawn. A value of -1

indicates all the pages should be drawn; StartPage(), EndPage(), etc., should be used as

usual. A positive value indicates that that particular page number should be drawn. The

lprcBounds parameter, as usual, indicates where on hdcDraw the drawing should be done.

The compositional size and other characteristics of the page should be taken from

hicTargetDev; the mapping into lprcBounds causes, perhaps, scaling to occur.

Object handlers (such as the Default Handler) which implement IViewObject::Draw() by playing a meta-

file have to treat SetPaletteEntries metafile records in a special way due to a bug in Windows. The Win-

dows function PlayMetaFile() sets these palette entries to the foreground, which is incorrect; they instead

need to be set to the background palette; use EnumMetaFile() and act accordingly.

The arguments to this function have the following meanings:

Argument Type Description

dwAspect DWORD a value taken from the enumeration DVASPECT. See above.

lindex DWORD indicates which piece of the object is of interest. Its interpretation var-

ies with dwAspect, as described above.

pvAspect void * a pointer through which further parameterization of what is actually

drawn can be conveyed. The actual type pointed to is determined

solely by dwAspect. None of the currently-defined aspects define such

a type; thus, this pointer currently must always be NULL.

ptd DVTARGETDEVICE *

the target device against which compositional decisions in the

rendered picture should be made. May be NULL, in which case the

picture should be rendered according to a target device that the object

deems an appropriate default. Usually, this is the DISPLAY target

device.

hicTargetDev HDC an information context on the target device indicated by ptd. May in

fact be a device context, but callers cannot rely on that. Will be NULL

in the case that ptd is NULL.

hdcDraw HDC the device context onto which the drawing should actually be done.

lprcBounds RECTL * as in the similarly-named parameter to OLE 1’s OleDraw() call. Points

to a RECTL structure which indicates the rectangle on hdcDraw on

58 Notice that it would be reasonable to use this aspect of drawing on things other than OLE objects; thus, we don’t require for this aspect

that the IViewObject also support IOleObject, as is enforced in DVAPSECT_CONTENT.
59 Some readers may find the connection between these two interfaces to be regrettable. The author would agree. Such is life in a large

engineering project.

Page: 159

OLE 2 Specification: Data & Presentation Transfer & Caching © Microsoft Corporation 1992-1993. All Rights Reserved.

which the object should be drawn. This parameter controls the posi-

tioning and stretching of the object.

lprcWBounds RECTL * conceptually similar to the like-named parameter to OLE 1’s

OleDraw() call. NULL unless hdcDraw is a metafile device context. If

non-NULL, then lprcWBounds points to a RECTL structure defining

the bounding rectangle of the metafile underneath hdcDraw. The

rectangle indicated by lprcBounds is nested inside this rectangle; they

are in the same coordinate space. This is a regular run-of-the-mill true

rectangle, unlike in OLE 1, where this parameter was actually an

(offset, extent) pair.

pfnContinue BOOL (*)(DWORD)

a callback function that the view object should call periodically during

a lengthy drawing operation to determine whether the operation

should be aborted. A return of false (zero) indicates that the drawing

should stop, and that the Draw() call should return E_ABORT.

Generally, this should be an exported function.

dwContinue DWORD a value that should be passed back as the argument to pfnContinue.

return value HRESULT S_OK, DV_E_DVASPECT, DV_E_LINDEX, E_ABORT

6.3.0.2. OleDraw

HRESULT OleDraw(pUnk, dwAspect, hdcDraw, lprcBounds)

OleDraw() is a simple helper function that makes the common case of drawing an object easy. The given

pUnk is QueryInterface()’d for IViewObject, the RECT is converted to a RECTL, then

pViewObj->Draw(dwAspect, -1, 0, 0, 0, hdcDraw, &rectl, 0, 0, 0)
is invoked. In this function, hdcDraw may not be a metafile device context.

Argument Type Description

pUnk IUnknown * the object which is to be drawn.

dwAspect DWORD the aspect of the object that is to be drawn

hdcDraw HDC as in IViewObject::Draw(). May not be a metafile device context.

lprcBounds RECT * as in IViewObject::Draw().

return value HRESULT S_OK, E_NOINTERFACE, errors returned by IViewObject::Draw()

6.3.0.3. IViewObject::GetColorSet

HRESULT IViewObject::GetColorSet(dwAspect, lindex, pvAspect, ptd, hicTargetDev, ppColorSet)

Returns the set of colors which would be used by a call to IViewObject::Draw() with the corresponding

parameters. S_FALSE is returned when the set is either empty or doesn't matter to the object.

The implementation of this function conceptually recurses on each of any nested embedded objects and

returns a color set which represents the union of all the colors requested. The color sets will eventually

percolate up to the top level container (the one who owns the window frame) who, by invoking this on

each of its embeddings, will have available to it knowledge of all the colors needed to draw all of its em-

bedded objects. It can use this color set in conjunction with the colors that it itself needs in order to set the

overall palette.

The Default Handler implements this function by looking at the data it has on hand to draw the picture. If

the drawing format is a DIB, the palette found in the DIB is used. For a regular bitmap, no color info-

rmation is returned.

If a metafile is the drawing format, then a special convention is used: the metafile is enumerated looking

for a CreatePalette() metafile record. If one is found, then it is used as the color set. Servers who rely on the

Default Handler for drawing and which use metafiles for doing so (that is, most servers) should thus

Page: 160

OLE 2 Specification: Data & Presentation Transfer & Caching © Microsoft Corporation 1992-1993. All Rights Reserved.

provide such a CreatePalette() record when they generate their metafiles. If no CreatePalette() metafile record

is found, then the implementation in the Default Handler of GetColorSet() returns S_FALSE.

Argument Type Description

dwAspect DWORD as in IViewObject::Draw().

lindex LONG as in IViewObject::Draw().

pvAspect void * as in IViewObject::Draw().

ptd DVTARGETDEVICE * as in IViewObject::Draw().

hicTargetDev HDC as in IViewObject::Draw().

pColorSet LOGPALETTE ** the place at which to return the set of colors that would be used.

NULL is returned along with S_FALSE.

return value HRESULT S_OK; S_FALSE, indicating that the set is empty or that the object

doesn’t care to give this information. OLE_E_BLANK

6.3.0.4. IViewObject::Freeze

HRESULT IViewObject::Freeze(dwAspect, lindex, pvAspect, pdwFreeze)

This function informs the object that it should not change its drawn representation until a subsequent

Unfreeze() is called. Until the Unfreeze(), successive calls to Draw() with the same parameters will

produce exactly the same picture. The most common use of this function is in banded printing. Being

frozen does not persist across unloads and reloads of an object; it is not part of an object’s persistent state.

An attempt to freeze an already-frozen aspect will return VIEW_S_ALREADYFROZEN, along with the

already existing dwFreeze value.

Argument Type Description

dwAspect DWORD as in Draw().

lindex LONG as in Draw().

pvAspect void * as in Draw().

pdwFreeze DWORD * a place to return a key which is to be passed back in Unfreeze().

return value HRESULT S_OK, OLE_E_BLANK, VIEW_S_ALREADYFROZEN

6.3.0.5. IViewObject::Unfreeze

HRESULT IViewObject::Unfreeze(dwFreeze)

Unfreeze a drawing that was previously frozen with IViewObject::Freeze().

Argument Type Description

dwFreeze DWORD a key previously returned from IViewObject::Freeze().

return value HRESULT S_OK

6.3.0.6. IViewObject::SetAdvise

HRESULT IViewObject::SetAdvise(grfAspects, grfAdvf, pAdvSink)

Set up an advisory connection between the view object and an advisory sink through which the sink can be

informed when drawings provided by object later change. The caller is asking specifically to be informed

about changes to the drawing that would be produced by calling Draw() with any of the one or more

aspects that are passed in grfAspects; it is not possible for the caller to request to be independently

informed of changes to the drawing as produced on different target devices. This function is semantically

very much like IDataObject::Advise(), but for drawings instead of data.

When the indicated drawing aspects change, the object pAdvSink should informed of the change using

IAdviseSink::OnViewChange(). At any one time, a given IViewObject instance can support at most one

Page: 161

OLE 2 Specification: Data & Presentation Transfer & Caching © Microsoft Corporation 1992-1993. All Rights Reserved.

advisory connection. An existing advisory connection can be torn down by passing a NULL pAdvSink

parameter value to this function.

A group of flags are passed in the grfAdvf parameter to control the advisory connection. The constants

than can be or’d together and passed in this parameter are found in the enumeration ADVF. These con-

stants were described in IDataObject::Advise().

The arguments to this function have the following meanings.

Argument Type Description

grfAspects DWORD a group of zero, one, or more values value taken from the

enumeration DVASPECT, though zero values is a no-op.

grfAdvf DWORD a group of flags taken from the enumeration ADVF.

pAdvSink IAdviseSink* the sink which should be informed of changes. Passing a NULL

value destroys any existing advisory connection.

return value HRESULT S_OK, OLE_E_ADVISENOTSUPPORTED, DV_E_DVASPECT

6.3.0.7. IViewObject::GetAdvise

HRESULT IViewObject::GetAdvise(pgrfAspects, pgrfAdvf, ppAdvSink)

Retrieve the existing advisory connection, if any, on the object. This function simply returns the values

passed to the most recent SetAdvise() call.

Argument Type Description

pgrfAspects DWORD * through here is returned the most recent SetAdvise(grfAspects, ...)

parameter. May be NULL, indicating that the caller doesn’t want this

value returned.

pgrfAdvf DWORD * analogous to pgrfAspects, but with respect to the grfAdvf parameter to

SetAdvise(). May be NULL.

ppAdvSink IAdviseSink ** analogous to pgrfAspects, but with respect to the pAdvSink parameter

to SetAdvise(). May be NULL.

return value HRESULT S_OK.

6.4. IAdviseSink interface

IAdviseSink is an interface by which asynchronous call-backs that result from a change in some advisory

connection are sent to the object that originally set up the connection in the first place. A common case of

this, for example, is an object changing in such a way as its embedding and linking clients should update

their cached presentations of the object: an IDataObject::DAdvise() was done, which eventually results in

an IAdviseSink::OnDataChange() callback on the clients.

This interface was also discussed in the previous chapter, where its member functions other than OnData-

Change() and OnViewChange() were presented.

interface IAdviseSink : IUnknown {
...
virtual void OnDataChange(pformatetc, pmedium) = 0;
virtual void OnViewChange(dwAspect, lindex) = 0;
};

6.4.0.1. IAdviseSink::OnDataChange

void IAdviseSink::OnDataChange(pformatetc, pmedium)

Report to the sink that data that it has previously requested to be informed about has now changed. The

original request was made using IDataObject::DAdvise(). One OnDataChange() call is made for every

Advise() connection currently extant.

Page: 162

OLE 2 Specification: Data & Presentation Transfer & Caching © Microsoft Corporation 1992-1993. All Rights Reserved.

The format of the data being passed is in pformatetc, this structure has the same contents as were

originally passed to the IDataObject::DAdvise() call. The data itself is passed on the storage medium

found in pmedium. If the flag ADVF_NODATA was used, then the medium might be empty instead of

actually containing data: pmedium->tymed might be TYMED_NULL. The medium is owned by the caller of

OnDataChange(), not by the sink on which the call is made. For each sink, the data it receives in OnData-

Change() is only valid for the duration of the call. The sink should not hold on to or free the medium in

any way.

Argument Type Description

pformatetc FORMATETC* the format, etc., on which a DAdvise() was set up.

pmedium STGMEDIUM* the medium on which the data is passed.

6.4.0.2. IAdviseSink::OnViewChange

void IAdviseSink::OnViewChange(grfAspects, lindex)

Report to the sink that a view on an object that it has previously requested to be informed about has now

changed. The original request was made using IViewObject::SetAdvise().

If grfAspects contains exactly one aspect, then lindex indicates which specific piece of that aspect has

changed. See IViewObject::Draw().

Argument Type Description

grfAspects DWORD a group of values taken from the enumeration DVASPECT.

lindex LONG indicates which piece of the view has changed.

6.5. Data & Presentation Transfer & Caching in OLE 2

This section discusses the use in OLE 2 of the interfaces and functions documented earlier in this chapter.

It addresses this from several viewpoints: that of a embedding or linking client, that of an object handler,

and that of a remote server object. Figure 71 shows the notification connections present when an OLE 2

embedded object is loaded and running (this picture shows only interfaces directly relevant to data and

presentation caching; there are other interfaces on these objects, which are not shown in this figure).

IDataObject

IViewObject

DLL Boundary Process Boundary

IDataObject
Server
object

Legend
= zero or more advise

connections

Storage Object

IStorage

Embedding
site IOleCacheIAdviseSink

Handler
(default or otherwise)

Figure 71. Data and presentation control in an OLE 2 compound document object.

The container of the object engages in a dialog with the Object Handler, asking it to get data in a certain

format, to draw itself, etc. In order that this can happen, the handler presents IDataObject, IViewObject,

and IOleCache interfaces for use by the client. The container makes GetData()/SetData()/Draw() calls to

transfer information to and from the object, makes Advise() calls in order to be informed when things

change, and uses IOleCache interface (see below) in order to let the handler know what capabilities it

should cache. The IDataObject and IViewObject interface implementations operate out of data cached on

the client side. The handler implementation of IViewObject is responsible for determining what data

Page: 163

OLE 2 Specification: Data & Presentation Transfer & Caching © Microsoft Corporation 1992-1993. All Rights Reserved.

format(s) to cache in order to satisfy client draw requests; notice that the server object only implements

IDataObject, not IViewObject.

An internal object to the Default Handler known as the Data Cache is responsible for getting data in var-

ious formats, etc., between memory and the underlying IStorage instance of the embedded object. Custom

handlers can access this implementation by aggregating in the Default Handler.

The Server Object supports IDataObject interface. At the time that the Handler connects to the Server in

the process of entering the running state, it makes appropriate Advise() connections to the Server’s IData-

Object interface. These advisory connections are torn down by the client when the object ceases to be in

the running state. The IDataObject instance on the Server Object may be connected to linking clients in

addition to or instead of its embedding clients, depending on what happens to be running at a given mo-

ment.

6.6. IOleCache interface

IOleCache interface is used with OLE 2 compound document objects to provide control of what actually

gets cached inside an embedded object and which will therefore be available to the object’s container even

when the server of the object is either not running or simply not available.

interface IOleCache : IUnknown {
virtual HRESULT Cache(pformatetc, grfAdvf, pdwConnection) = 0;
virtual HRESULT Uncache(dwConnection) = 0;
virtual HRESULT EnumCache(ppenumStatData) = 0;
virtual HRESULT InitCache(pDataObj) = 0;
virtual HRESULT SetData(pformatetc, pmedium, fRelease) = 0;
};

6.6.0.1. IOleCache::Cache

HRESULT IOleCache::Cache(pformatetc, grfAdvf, pdwConnection)

Indicate that the format, etc., found in pformatetc should be cached. This function can specify either data

or view caching;60 the latter is indicated by passing a zero clipboard format: pformatetc->cfFormat == 0.

Through pdwConnection is returned a value with which the specified caching can be turned off with

IOleCache::Uncache(). The grfAdf parameter contains a group of flags taken from the enumeration ADVF.

This enumeration was initially presented earlier, but is repeated here for reference:

typedef enum tagADVF {
// ... other flags not here applicable ...
ADVF_NODATA = ...,
ADVF_ONLYONCE = ...,
ADVF_PRIMEFIRST = ...,
ADVFCACHE_NOHANDLER = 8,
ADVFCACHE_FORCEBUILTIN = 16,
ADVFCACHE_ONSAVE = 32,
} ADVF;

The ADVF_PRIMEFIRST flag indicates that the cache is to be filled immediately, not waiting for the first

time that the data changes. If the object is not currently running, the cache is in fact filled the first time

that the running state is entered. ADVF_NODATA is used in caching to indicate that the cache should not in

fact be filled by changes in the server object; rather, the container will fill the cache by making explicit

IOleCache::SetData() calls. See that function for details.

In addition, the ADVFCACHE_ flags are applicable to IOleCache::Cache(). It is conceivable that a custom

object handler might choose not to actually store data in a given format, but synthesize it on demand later

when it is requested. Of course, this requires that the object handler in fact be present at that later time.

These flags permit the container document to anticipate that it might be moved by the user to a location at

which the object server application or handler might not be available and take action to ensure that the

data produced by the object presentation will available nevertheless.

60 with view caching, the object itself decides what formats to cache in order to handle a future request to draw.

Page: 164

OLE 2 Specification: Data & Presentation Transfer & Caching © Microsoft Corporation 1992-1993. All Rights Reserved.

Object handlers authors will want to look at the description of the implementation of this function in the

Default Handler, which is found below; in particular, note the behaviour of that implementation when

draw caching is asked for.

Value Description

ADVFCACHE_FORCEBUILTIN This flag forces data to be cached that only requires code shipped with

OLE or the underlying operating system to be present in order to

produce it with IDataObject::GetData() or IViewObject::Draw(), as

appropriate. By specifying this flag, the container can ensure that the

data can be retrieved even if no object server or handler code is

available.

ADVFCACHE_NOHANDLER reserved for future use. Do not specify.

ADVFCACHE_ONSAVE Do not update the cached representation on every change of the data;

rather, wait until the object containing the cache is saved to update the

cache. The cache will also be updated when the OLE object transitions

from the running state back to the loaded state, since otherwise a

subsequent “save” would require a re-running of the object.

The arguments to this function are as follows:

Argument Type Description

pformatetc FORMATETC * the format, etc., of data that is to be cached.

grfAdvf DWORD a group of controlling flags. See above.

pdwConnection DWORD * a place to return a value which can be used to turn off the caching.

May (rarely) be NULL, in which case the dwConnection can be

retrieved by enumeration; see IOleCache::EnumCache().

return value HRESULT S_OK

6.6.0.2. IOleCache::Uncache

HRESULT IOleCache::Uncache(dwConnection)

Tear down a cache connection setup previously with IOleCache::Cache(). The dwConnection parameter

here is a non-zero value returned through pdwConnection in the call that set up the caching. If this value

does not actually indicate a valid connection, then OLE_E_NOCONNECTION is returned.

Argument Type Description

dwConnection DWORD a non-zero value previously returned in *pdwConnection.

return value HRESULT S_OK, OLE_E_NOCONNECTION.

6.6.0.3. IOleCache::EnumCache

HRESULT IOleCache::EnumCache(ppenum)

Enumerate the cache connections that are presently established.

Argument Type Description

ppenum IEnumSTATDATA* the place at which the new enumerator should be returned. NULL

is a legal return value; it indicates that there are presently not any

connections.

return value HRESULT S_OK, E_OUTOFMEMORY

Page: 165

OLE 2 Specification: Data & Presentation Transfer & Caching © Microsoft Corporation 1992-1993. All Rights Reserved.

6.6.0.4. IOleCache::InitCache

HRESULT IOleCache::InitCache(pDataObj)

Fill the cache as needed from data which is offered in this Clipboard Data Object. This is almost

exclusively used only in the process of creating an object from the clipboard or through a drag-drop

operation in the event that the format CF_EMBEDSOURCE is used to create the object. Its purpose is to fill

the data cache in the embedded object from the other data formats, etc., provided on the clipboard or in

the drop operation. The function OleCreateFromData() and its relatives do this automatically when

appropriate. Sophisticated clients can do this themselves; they will usually want beforehand to use

IOleCache::Cache() to set up the cache entries which are then filled by InitCache().

Argument Type Description

pDataObj IDataObject * the Clipboard Data Object with which the data cache may be

initialized.

return value HRESULT S_OK

6.6.0.5. IOleCache::SetData

HRESULT IOleCache::SetData(pformatetc, pmedium, fRelease)

Sets data into the cache. This is very much like IOleCache::InitCache(), but only sets a single datum.

Other than this, the sole difference between the two is whereas InitCache() will not fill up cache entries

tagged with ADVFCACHE_NODATA, SetData() will in fact do so.

A container may find it convenient to use this function in order to maintain the user-set icon aspect of an

object. If the container is going set up a cache for icon aspect and stuff it with an icon he provides, then it

would create a cache entry by calling IOleCache::Cache() with ADVF_NODATA | ADVF_ONLYONCE | ADVF_-
PRIMEFIRST. Data stored by subsequent container calls to IOleCache::SetData() will be stored in the cache. It

will be used to service IViewObject::Draw() calls that request icon aspect.

Argument Type Description

pformatetc FORMATETC* the format of the data being set into the cache

pmedium STGMEDIUM* the medium containing the data being set into the cache

fRelease BOOL true if the IOleCache implementation should release the medium; false

if the caller will release it.

return value HRESULT S_OK, OLE_E_BLANK,

6.6.0.6. CreateDataCache

STDAPI CreateDataCache(pUnkOuter, rclsid, iid, ppv)

Create and return a new instance of the OLE-provided cache implementation. The returned object sup-

ports IOleCache for controlling the cache, IPersistStorage for getting its bits in and out of persistent

storage, and IDataObject (sans advises). Typically, this is only used by authors of in-proc server (DLL

server) objects.

Argument Type Description

pUnkOuter IUnknown* the (possibly NULL) controlling unknown of the aggregate in which

the cache object is to be instantiated

clsid REFCLSID the class id used only to generate default icon labels; most often

CLSID_NULL.

iid REFIID the interface id with which the caller wishes to communicate with the

created cache object. Typically IID_IOleCache.

ppv void** the place at which the cache object is returned.

return value HRESULT S_OK, E_NOMEMORY

Page: 166

OLE 2 Specification: Data & Presentation Transfer & Caching © Microsoft Corporation 1992-1993. All Rights Reserved.

6.7. OLE-provided Implementations of Transfer and Caching Interfaces

6.7.1. Object Handler

In OLE 2, the Object Handler does many things; the discussion here concentrates on how it supports data

and presentation caching. The Object Handler is either the Default Handler provided by OLE 2, or is an

object-provided handler; object-provided handlers have access to the Default Handler, as so may aggregate

it in, delegate to it or otherwise use it as they see fit. We shall at times point out the behaviour of the

Default Handler. Object provided handlers may differ at their discretion.

The Default Object Handler presents IDataObject, IViewObject, and IOleCache interfaces. The semantics

of these function implementations are as described below.

The Object Handler is responsible for converting the requirement of being able to service an IViewObject-

::Draw() call into the appropriate data being cached in the Data Cache. Draw()ing is always done locally,

never by remoting the call across to the Server Object. The Object Handler is also responsible for trans-

parently doing appropriate conversion of the data cached for drawing purposes as the object is moved from

platform to platform (e.g.: from Windows to the Macintosh). The Default Handler knows how to convert

between the presentation formats it knows about (metafiles, bitmaps, DIBs, etc. on Windows, and PICTs

on the Macintosh).

The Object Handler also owns the data cache, and ensures it is kept up to date. As the running state is

entered, the Handler sets up appropriate advisory connections on the Server Object passing an IAdvise-

Sink of itself as the sink. When OnDataChange() is invoked on this sink, the Handler updates the data

cache, then as appropriate invokes OnDataChange() and / or OnViewChange() to the sink in its embed-

ding site.

6.7.1.1. IDataObject::GetData

Gets the data out of the Data Cache, if it is there. If it is not there, and if the object is running and so the

Server Object is available, then this function delegates to GetData() on the Server Object in order to get

the data. In this latter case, the retrieved data is not automatically put in the cache; data is put into the

cache only if an appropriate IOleCache::Cache() call has been made.

6.7.1.2. IDataObject::SetData

No effect unless the object is running. If the object is running, then this call is delegated to SetData() on

the Server Object.

6.7.1.3. IDataObject::EnumFormatEtc

Does the obviously appropriate thing, according to what’s in the cache and whether the object is currently

running or not.

6.7.1.4. IDataObject::DAdvise

Sets up an advisory connection to the passed in advise sink. A new advisory connection must be estab-

lished every time the object is loaded; the connections do not persist from session to session.

6.7.1.5. IViewObject::Draw

The object draws the requested picture using the data maintained in the Data Cache.

The Default Handler knows how to draw the DVASPECT_CONTENT aspect. The implementation of this

basically as it is as in OLE 1, querying the Server Object first to provide a metafile, then a DIB, then a

bitmap; see the description of the Default Handler’s implementation of IOleCache below. Note, however,

that unlike OLE 1 this is now keyed by target device: different target devices are kept separate from each

other, and so multiple presentations can be maintained.

Page: 167

OLE 2 Specification: Data & Presentation Transfer & Caching © Microsoft Corporation 1992-1993. All Rights Reserved.

6.7.1.6. IOleCache::Cache

This function adds an item to the list of formats, etc., which are kept in the Data Cache.

The cache connections established on this instance of this interface are long lived: they persist through

pacifications and reloadings of the object until explicitly broken by the client through IOleCache::-

Uncache(). A consequence of this is that the dwConnection value returned from Cache() is logically part

of the persistent state of the embedding container, though IOleCache::EnumCache() may be of use to it in

this regard.

New cache connections can be established when the object is in either the loaded or the running state.

When the object is loaded, the filling of the cache is deferred until the object is run. As pictured in Fig-

ure 71, when the object is in the running state, the handler uses IDataObject interface on its server in

order to provide initial data for the cache when a new advisory connection is established on the handler.

When asked to do draw-caching, at the first time that the object is made running, the cache uses IDataOb-

ject::GetData() with a succession of clipboard formats in order to determine what presentation format is

actually available from the running object. It tries, in order, the following clipboard formats:

CF_METAFILEPICT
CF_DIB
CF_BITMAP

Thus, servers who chose to rely on the default handler (that is, do not implement custom handlers) will

want to support these formats in GetData(). Internally, the Default Handler converts CF_BITMAP data to

CF_DIB data before storing it persistently.

6.7.2. Server Object

With respect to data and presentation caching, the Server Object implements just IDataObject interface.

As its embedding client connects to it as the running state is entered, and as various linking clients con-

nect to it, advisory connections are set up by the clients. These connections are transitory: they are de-

stroyed / torn down when the running state is exited or as the linking clients are closed. The connections

are reestablished afresh each time with new DAdvise() calls.

The fact that the Server Object implements IDataObject interface as its support of data and presentation

transfer and caching is a consequence of the behaviour of the Default Handler. It is conceivable that some

object-supplied handler might choose to communicate with the Server Object using some other interface

instead of or in addition to IDataObject.

6.7.3. IDataAdviseHolder interface and implementation

IDataAdviseHolder is an interface used to communicate with an OLE-provided implementation of func-

tionality useful to handlers and servers for remembering the set of IDataObject::DAdvise() calls they have

received and sending subsequent change notifications.

interface IDataAdviseHolder : IUnknown {
virtual HRESULT Advise(pformatetc, grfAdvf, pAdvSink, pdwConnection) = 0;
virtual HRESULT Unadvise(dwConnection) = 0;
virtual HRESULT EnumAdvise(ppenumAdvise) = 0;
virtual HRESULT SendOnDataChange(pDataObject, dwReserved, advf) = 0;
};

HRESULT CreateDataAdviseHolder(ppHolder);
The holder internally keeps track of the Advise() calls that have been made on it. These can be torn down

with Unadvise() and enumerated with EnumAdvise(); see the documentation of similarly named functions

in IDataObject for a detailed description of their parameters. It is expected that implementations of these

three functions in a server IDataObject implementation will merely delegate calls to the corresponding

function on an internal IDataAdviseHolder instance.

The holder also implements the functionality necessary to package up the array of data that needs to be

passed to each IAdviseSink::OnDataChange() call along with the functionality of actually invoking On-

Page: 168

OLE 2 Specification: Data & Presentation Transfer & Caching © Microsoft Corporation 1992-1993. All Rights Reserved.

DataChange() on each sink. Then, when data changes in a server, it need only pass itself as a parameter to

SendOnDataChange() in order to inform all the sinks currently listening on advisory connections.

6.7.3.1. IDataAdviseHolder::SendOnDataChange

HRESULT IDataAdviseHolder::SendOnDataChange(pDataObject, dwReserved, advf)

Send appropriate IAdviseSink::OnDataChange() messages to all sinks currently registered with this data-

advise holder. The data that is to be passed in each OnDataChange() is obtained from the passed param-

eter using pDataObject->GetData() calls.

Argument Type Description

pDataObject IDataObject* the source of the data to be passed in the OnDataChange() messages;

this is the object in which the data change has just occurred.

dwReserved DWORD reserved for future use; must be zero.

advf DWORD the advise flags for which a change notification in fact is to be sent. Of

particular importance here is ADVF_PRIMEFIRST.

return value HRESULT S_OK, E_OUTOFMEMORY

6.7.3.2. CreateDataAdviseHandler

HRESULT CreateDataAdviseHolder(ppHolder)

Return a new instance of an OLE-provided implementation of IDataAdviseHolder interface.

Argument Type Description

ppHolder IDataAdviseHolder** the place at which the new instance is to be returned.

return value HRESULT S_OK, E_OUTOFMEMORY

6.7.4. Helper APIs

6.7.4.1. OleDuplicateData

HANDLE OleDuplicateData(hSrc, cfFormat, uiFlags)

This handy helper function merely returns a duplicate of the data found in the given handle. The follow-

ing clipboard format values:

CF_BITMAP
CF_PALETTE
CF_METAFILEPICT

receive special handling; other clipboard formats are merely duplicated byte-wise.

Argument Type Description

hSrc HANDLE the data to be duplicated

cfFormat CLIPFORMAT the data format of the data in the handle

uiFlags UINT the flags with which to allocate the memory for the copied data; passed

to GlobalAlloc(). If uiFlags == NULL, then a value of GMEM_MOVEABLE is
used as a default.

return value HANDLE the duplicated data; NULL indicates error.

Page: 169

